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Abstract

Viscous flow behavior of amorphous Zr65(Ni,Pd)35 alloy 
has been studied at a heating rate of 20 K/min. The viscos-
ity experimental results are interpreted on the basis of the 
free volume model. The values of the model parameters 
obtained are used for estimation of glass forming ability in 
terms of the Angell parameter, and the fracture strength of 
the alloys based on its correlation with the glass transition 
temperature.

The glass transition temperature is 663 K. The alloy 
Zr65(Ni,Pd)35 possesses excellent fracture strength of about 
2.28 GPa, comparable to that of stainless steels.

The relatively good thermal and excellent mechanical 
properties make this alloy promising for preparing bulk 
amorphous samples.

Keywords: metallic glass, viscosity, glass-forming ability

1. Introduction

Zr-based amorphous metal alloys have a good com-
bination of excellent mechanical properties, excellent 
corrosion resistance and a low coefficient of thermal 
expansion [1‒4]. The main reasons for extensive re-
search in the field of these alloys are: 

 – Ability to form metal-metal glass;

 – Ability to form glass in a wide range of composi-
tions [5–7]; 

 – Specific glass-crystal transition – some of the Zr-
based metallic glasses crystallize in phases of the 
same composition [8].
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The importance of Zr-Ni, Zr-Co, Zr-Fe, Zr-Cu and  
Zr-Cr systems, which are very common, is determined 
on one hand by the fact that rapid solidification enables 
amorphous alloys to be formed in a large range of com-
positions and, on the other hand, to develop on their 
basis a significant number of multi-compartmental metal 
glasses which, when rapidly cooled, can form massive 
ingots [9,10].

The aim of this work is to investigate the viscous flow 
behavior of amorphous alloy Zr65(Ni,Pd)35.

2. Theoretical background

The temperature dependence of the viscosity of amor-
phous metal alloys under non-isothermal conditions can 
be interpreted on the basis of the Free Volume Model 
(FVM) with one general dependence [11]:

          (1)

Here Qη is the activation energy for the viscous flow, 
η0 is a pre-exponential factor and cf is the concentration 
of flow defects. The equilibrium concentration of flow 
defects cf,eq(T) is given by cf,eq(T) = exp(−B/(T − To)) 
where B and T0 are two model parameters which can be 
related to the empirical constants BVFT and T0,VFT in the 
classical empirical Vogel-Fulcher-Tammann equation. 
Replacing cf,eq(T) in Equation (1) the so-called “hybrid” 
temperature dependence of quasi-equilibrium viscosity 
ηeq is obtained:

          (2)
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Here Qη is the activation energy for the viscous flow, 0 is a pre-exponential factor and cf is the 
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Equation (2) describes the change of viscosity of glass forming undercooled (metallic) melts in the 

structural state, where the flow defect concentration follows immediately the changes of temperature. 

Russew et al. proposed an equation of Bernoulli of 2nd order [12,13] describing the change of cf in the 

glassy alloy with temperature under non-isothermal conditions and at a constant heating rate q in the 

temperature range around the glass transition temperature: 
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Qr is activation energy of relaxation, cf,0 is the initial defect concentration and R is the universal gas 

constant. Combining equation (1) with Equation (3), one obtains the temperature dependence of 

viscosity  in the high temperature range near Tg. The Free Volume Model interpretation of the 

viscosity experimental data allows specifying the model parameters in Eq. (1) and Eq. (3) by using 

multi-parameter regression analysis. 

Glass Forming Ability (GFA) and Melt Fragility Number 

Angell [14] classifies the glass forming melts as “strong” and “fragile” depending on the their viscosity 

temperature dependence in coordinates log10(η) vs. Tg/T. The slope of this temperature dependence 

at Tg/T = 1 defines the so-called melt fragility number of Angell mA. The higher is mA, the more fragile 

is the liquid and vice versa. In the physics of amorphous bodies, fragility characterizes how rapidly the 

dynamics of a material slow down as it is cooled toward the glass transition temperature Tg. Materials 

with a higher fragility have a relatively narrow glass transition temperature range, while those with low 

fragility have a relatively broad glass transition temperature range. Liquids of Arrhenius-type are 

described as “strong,” and these of Vogel-Fulcher-Tammann type as “fragile.” The strong liquids 

possess a melt fragility number mA lower than 10, while the “fragile” liquids have melt fragility numbers 

about 100 or more. Metallic glasses occupy an intermediate position with melt fragility numbers 

between 30 and 60. The higher the melt fragility number of Angell, the lower is the glass forming ability 

of metallic melts. The melt fragility number of Angell can be conveniently used as a measure for GFA. 

According to the approach proposed by Angell [14], available data on the viscosity of the supercooled 

metal melt is presented as a function of Tg/T. The slope of the curve at Tg presents the melt fragility 

number of Angell mA: 
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Equation (2) describes the change of viscosity of 
glass forming undercooled (metallic) melts in the struc-
tural state, where the flow defect concentration follows 
immediately the changes of temperature. Russew et 
al. proposed an equation of Bernoulli of the 2nd order 
[12,13] describing the change of cf in the glassy alloy 
with temperatures under non-isothermal conditions and 
at a constant heating rate q in the temperature range 
around the glass transition temperature:

    ,  

where

and 

νr is the attempt frequency,

Qr is activation energy of relaxation,

cf,0 is the initial defect concentration 

and R is the universal gas constant.

Combining Equation (1) with Equation (3), one obtains the 
temperature dependence of viscosity η in the high tem-
perature range near Tg. The Free Volume Model interpre-
tation of the viscosity experimental data allows specifying 
the model parameters in Equation (1) and Equation (3) 
by using multi-parameter regression analysis.

2.1. Glass Forming Ability (GFA) and Melt Fragility 
Number

Angell [14] classifies the glass forming melts as 
“strong” and “fragile” depending on their viscosity tem-
perature dependence in coordinates log10(η) vs. Tg/T. 
The slope of this temperature dependence at Tg/T = 
1 defines the so-called melt fragility number of Angell 
mA. The higher the mA, the more fragile the liquid and 
vice versa. In the physics of amorphous bodies, fragil-
ity characterizes how rapidly the dynamics of a mate-
rial slow down as it is cooled toward the glass tran-
sition temperature Tg. Materials with a higher fragility 
have a relatively narrow glass transition temperature 
range, while those with low fragility have a relatively 
broad glass transition temperature range. Liquids of 
Arrhenius-type are described as “strong,” and these of 
Vogel-Fulcher-Tammann type as “fragile.” The strong 
liquids possess a melt fragility number mA lower than 
10, while the “fragile” liquids have melt fragility numbers 

about 100 or more. Metallic glasses occupy an inter-
mediate position with melt fragility numbers between  
30 and 60. The higher the melt fragility number of Angell, 
the lower is the glass forming ability of metallic melts. 
The melt fragility number of Angell can be conveniently 
used as a measure for GFA.

According to the approach proposed by Angell [14], 
available data on the viscosity of the supercooled metal 
melt is presented as a function of Tg/T. The slope of 
the curve at Tg presents the melt fragility number of 
Angell mA:

           (4)

Equation (4) is based on the assumption that melt 
viscosity of glass forming substances follows Vogel-
Fulcher-Tammann temperature dependence. In the case 
of FVM interpretation the viscosity temperature depend-
ence should be presented by the “hybrid” Equation (2) 
instead of Vogel-Fulcher-Tammann-type equation. In 
this case:

           (5)

2.2. Fracture strength

Yang et al. [15] make a successful attempt to bring 
dependence on the strength of metallic glasses based 
on the physical analogy between plastic deformation 
and the glass transition process. As a result, they come 
to the interesting and important conclusion that the 
fracture strength at room temperature can be predicted 
by the glass transition temperature Tg and the molar 
volume Vm (of a mixture of components) by a simple 
dependence:

          (6)

3. Experimental procedure

The ternary Zr-Ni-Pd master alloy was prepared by 
arc melting the mixture of the pure metals (Pd 99.8,  
Ni 99.95, and Zr 99.95) under argon atmosphere. Amor-
phous ribbons are produced by melt-spinning under 
helium atmosphere of 300 mbar, using a quartz cru-
cible and a copper quenching wheel with a diameter of  
250 mm and a surface velocity of 35 m.s-1. The dimen-
sions of the ribbons range from 1.08 to 1.12 mm in width 
and ~40 mµ in thickness.
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Eq. (4) is based on the assumption that melt viscosity of glass forming substances follows Vogel-

Fulcher-Tammann temperature dependence. In the case of FVM interpretation the viscosity 

temperature dependence should be presented by the “hybrid” Eq.(2) instead of Vogel-Fulcher-

Tammann-type equation. In this case: 
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Yang et al. [15] make a successful attempt to bring dependence on the strength of metallic glasses 

based on the physical analogy between plastic deformation and the glass transition process. As  

a result, they come to the interesting and important conclusion that the fracture strength at room 

temperature can be predicted by the glass transition temperature Tg and the molar volume Vm (of  

a mixture of components) by a simple dependence: 
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a diameter of 250 mm and surface velocity of 35 m.s-1. The dimensions of the ribbons range from 1.08 
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The microstructure of the as-cast and annealed alloys are characterized by X-ray diffraction (XRD) 

with CuKα radiation. The viscous behavior of the amorphous ribbon in heating mode at 20 K/min are 

studied using a Perkin Elmer quartz thermomechanical TMS2 analyzer. 
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The microstructure of the as-cast and annealed alloys 
was characterized by X-ray diffraction (XRD) with CuKα 
radiation. The viscous behavior of the amorphous rib-
bon in heating mode at 20 K/min was studied using the 
Perkin Elmer quartz thermomechanical TMS2 analyzer.

4. Results and discussion

4.1. Thermo-mechanical analysis

Typical experimental elongation-temperature (time) 
curves of Zr65(Ni,Pd)35 glassy alloy at 20 K/min are 
shown in Figure 1.

Fig. 1. Experimental elongation temperature curves [ lT − l0] 
of Zr65(Ni,Pd)35 glassy alloy at a heating rate of 20 K/min. 
The applied loads were 0.05, 0.7 and 0.1 kg respectively

The overall strain of a glassy alloy ribbon reached at 
temperature T under applied tensile stress and continu-
ous heating conditions can be presented as:

                      (7)

where 0l  and ( )Tl  are the initial length and the current 
length of the specimen at temperature T respectively,                                          
                      represents the elastic strain of the ribbon, 
with ( )TE – the Young’s modulus of the material, and  
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Fig. 1. Experimental elongation temperature curves [lT-l0] of Zr65(Ni,Pd)35  
glassy alloy at a heating rate of 20 K/min. The applied loads were 0.05, 

0.7 and 0.1 kg respectively 
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respectively,    TETel    represents the elastic strain of the ribbon, with  TE  – the Young’s 

modulus of the material, and  Tan
  represents the possible anelastic contribution to the overall 

strain,  Trel
  takes into account the contribution of any relaxation effects to the overall strain,  Tte

  

represents the contribution of the thermal expansion to the overall strain, and  Tf  takes into 

account the contribution of viscous flow to the overall strain, respectively. 

     The following considerations can be made with respect to the different strain contributions. The 

temperature dependence of Young’s modulus  TE  is very weak. This is a common feature for 

Young’s modulus of metals and alloys at temperatures much lower than their melting point. As the 

maximal absolute values of the stresses by our creep experiments do not usually exceed 15 MPa, the 

magnitude of the elastic strain contribution to the overall strain is estimated to be lower than 1×10-4 in 

most cases, and thus can be neglected. The anelastic contribution  Tan
  to the overall strain almost 

certainly cannot be neglected at lower temperatures. At a first approximation  Tan
  in the 

temperature range   gg TKT  50  could be neglected. They have shown unambiguously that in the 

temperature range  KTg 100  the anelastic deformation contribution to the overall strain can be 

neglected. Since the coefficient of thermal expansion and the rate of relaxation are independent of the 
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Fig. 1. Experimental elongation temperature curves [lT-l0] of Zr65(Ni,Pd)35  
glassy alloy at a heating rate of 20 K/min. The applied loads were 0.05, 

0.7 and 0.1 kg respectively 
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Young’s modulus of metals and alloys at temperatures much lower than their melting point. As the 
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magnitude of the elastic strain contribution to the overall strain is estimated to be lower than 1×10-4 in 

most cases, and thus can be neglected. The anelastic contribution  Tan
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 takes into account 
the contribution of viscous flow to the overall strain, 
respectively.

The following considerations can be made with re-
spect to the different strain contributions. The temper-
ature dependence of Young’s modulus ( )TE  is very 
weak. This is a common feature for Young’s modulus 
of metals and alloys at temperatures much lower than 
their melting point. As the maximal absolute values of 
the stresses by our creep experiments do not usually 

exceed 15 MPa, the magnitude of the elastic strain con-
tribution to the overall strain is estimated to be lower 
than 1 × 10-4 in most cases, and thus can be neglected. 
The anelastic contribution 
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Fig. 1. Experimental elongation temperature curves [lT-l0] of Zr65(Ni,Pd)35  
glassy alloy at a heating rate of 20 K/min. The applied loads were 0.05, 

0.7 and 0.1 kg respectively 
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continuous heating conditions can be presented as: 

              ,00 TTTTTllTlT fterelanel 
        (7) 
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respectively,    TETel    represents the elastic strain of the ribbon, with  TE  – the Young’s 
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0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

600 650 700 750 800

E
lo

ng
at

io
n,

 l T
-l 0

T, K

50 70 100

 to the overall strain 
almost certainly cannot be neglected at lower tempera-
tures. The first approximation of 

4

 

Fig. 1. Experimental elongation temperature curves [lT-l0] of Zr65(Ni,Pd)35  
glassy alloy at a heating rate of 20 K/min. The applied loads were 0.05, 

0.7 and 0.1 kg respectively 

The overall strain of a glassy alloy ribbon reached at temperature T under applied tensile stress and 

continuous heating conditions can be presented as: 
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where 0l  and  Tl  are the initial length and the current length of the specimen at temperature T 

respectively,    TETel    represents the elastic strain of the ribbon, with  TE  – the Young’s 

modulus of the material, and  Tan
  represents the possible anelastic contribution to the overall 

strain,  Trel
  takes into account the contribution of any relaxation effects to the overall strain,  Tte
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represents the contribution of the thermal expansion to the overall strain, and  Tf  takes into 

account the contribution of viscous flow to the overall strain, respectively. 

     The following considerations can be made with respect to the different strain contributions. The 

temperature dependence of Young’s modulus  TE  is very weak. This is a common feature for 

Young’s modulus of metals and alloys at temperatures much lower than their melting point. As the 
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range (Tg − 50 K) ÷ Tg could be neglected. They have 
shown unambiguously that in the temperature range  
(Tg − 100 K) the anelastic deformation contribution to 
the overall strain can be neglected. Since the coefficient 
of thermal expansion and the rate of relaxation are in-
dependent of stress, the strain contributions 
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Fig. 1. Experimental elongation temperature curves [lT-l0] of Zr65(Ni,Pd)35  
glassy alloy at a heating rate of 20 K/min. The applied loads were 0.05, 

0.7 and 0.1 kg respectively 

The overall strain of a glassy alloy ribbon reached at temperature T under applied tensile stress and 

continuous heating conditions can be presented as: 
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where 0l  and  Tl  are the initial length and the current length of the specimen at temperature T 

respectively,    TETel    represents the elastic strain of the ribbon, with  TE  – the Young’s 

modulus of the material, and  Tan
  represents the possible anelastic contribution to the overall 

strain,  Trel
  takes into account the contribution of any relaxation effects to the overall strain,  Tte
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represents the contribution of the thermal expansion to the overall strain, and  Tf  takes into 

account the contribution of viscous flow to the overall strain, respectively. 

     The following considerations can be made with respect to the different strain contributions. The 

temperature dependence of Young’s modulus  TE  is very weak. This is a common feature for 

Young’s modulus of metals and alloys at temperatures much lower than their melting point. As the 
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  in the 
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Fig. 1. Experimental elongation temperature curves [lT-l0] of Zr65(Ni,Pd)35  
glassy alloy at a heating rate of 20 K/min. The applied loads were 0.05, 

0.7 and 0.1 kg respectively 

The overall strain of a glassy alloy ribbon reached at temperature T under applied tensile stress and 

continuous heating conditions can be presented as: 
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where 0l  and  Tl  are the initial length and the current length of the specimen at temperature T 

respectively,    TETel    represents the elastic strain of the ribbon, with  TE  – the Young’s 

modulus of the material, and  Tan
  represents the possible anelastic contribution to the overall 
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  takes into account the contribution of any relaxation effects to the overall strain,  Tte
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represents the contribution of the thermal expansion to the overall strain, and  Tf  takes into 

account the contribution of viscous flow to the overall strain, respectively. 

     The following considerations can be made with respect to the different strain contributions. The 

temperature dependence of Young’s modulus  TE  is very weak. This is a common feature for 

Young’s modulus of metals and alloys at temperatures much lower than their melting point. As the 
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Fig. 1. Experimental elongation temperature curves [lT-l0] of Zr65(Ni,Pd)35  
glassy alloy at a heating rate of 20 K/min. The applied loads were 0.05, 

0.7 and 0.1 kg respectively 

The overall strain of a glassy alloy ribbon reached at temperature T under applied tensile stress and 

continuous heating conditions can be presented as: 

              ,00 TTTTTllTlT fterelanel 
        (7) 

where 0l  and  Tl  are the initial length and the current length of the specimen at temperature T 

respectively,    TETel    represents the elastic strain of the ribbon, with  TE  – the Young’s 

modulus of the material, and  Tan
  represents the possible anelastic contribution to the overall 

strain,  Trel
  takes into account the contribution of any relaxation effects to the overall strain,  Tte
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represents the contribution of the thermal expansion to the overall strain, and  Tf  takes into 

account the contribution of viscous flow to the overall strain, respectively. 

     The following considerations can be made with respect to the different strain contributions. The 

temperature dependence of Young’s modulus  TE  is very weak. This is a common feature for 

Young’s modulus of metals and alloys at temperatures much lower than their melting point. As the 

maximal absolute values of the stresses by our creep experiments do not usually exceed 15 MPa, the 

magnitude of the elastic strain contribution to the overall strain is estimated to be lower than 1×10-4 in 

most cases, and thus can be neglected. The anelastic contribution  Tan
  to the overall strain almost 

certainly cannot be neglected at lower temperatures. At a first approximation  Tan
  in the 

temperature range   gg TKT  50  could be neglected. They have shown unambiguously that in the 
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neglected. Since the coefficient of thermal expansion and the rate of relaxation are independent of the 
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 of a ribbon tested under 
conditions differing only in the applied tensile stresses 
σ1(T) and σ2(T) should be equal. Taking into account 
these considerations one obtains:

 ( ) ( ) ( ) ( ) ( ),21212,1 TTTTT ff ν
ο

ν
σσσ εεεεε −≅−=∆     (8)

where ( )T2,1ε∆  is caused by an effective stress 
.212,1 σσσ −=∆

The determination of temperature dependence of 
viscosity around the glass transition temperature can 
be followed in detail using the experimental results pre-
sented in Figures 2–5.

Fig. 2. Temperature dependences of strain differences ∆ε for 
the Zr65(Ni,Pd)35 glassy alloy at a heating rate of 20 K/min: 
∆ε70−50 = ε70−ε50; ∆ε100−50 = ε100−ε50; ∆ε100−50 = ε100−ε50 which 

are caused by applied effective loads of 0.05; 0.07; and 0.1 kg

Figure 2 shows the temperature dependences of 
strain differences ∆ε for the Zr65(Ni,Pd)35 glassy alloy 
at a heating rate 20 K/min, which are caused by applied 
effective loads of 0.05, 0.07 and 0.1 kg.

The typical temperature dependence of the 
strain rate        caused by shear stress differences 

( )2121 3
1 σστ −=∆ −  are shown in Figure 3. That curve is 

obtained by numerical differentiation of the curve shown 
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observed, Figure 3. On reaching this temperature,  

4
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a rapid increase in the strain rates is observed as  
a result of reaching Tg of the alloy studied. 

Fig. 3. Temperature dependence of the strain rates of  
the amorphous glassy alloy Zr65(Ni,Pd)35 at a heating rate 

of 20 K/min: □ – 
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Fig. 3. Temperature dependence of the strain rates of the 

amorphous glassy alloy Zr65(Ni,Pd)35  at a heating rate of 20 K/min: 

�- )(5070 T  and - )(50100 T  

Figure 4 shows the shear viscosity (line) calculated by the strain rate in Figure 3. The points represent 

a smoothed curve of all viscosity data. A common feature of the viscosity curves obtained by 

measuring under a constant heating rate is the presence of two almost linear parts and curved 

transitional portion between them. The steeper part of the temperature dependence represents the 

approaching of the quasi-equilibrium structural state of under-cooled liquid of the alloy, described by 

the “hybrid” equation (3). The other one in the lower temperature region is the non-equilibrium 

viscosity of the vitrified alloy. In the temperature range of crystallization beginning, the viscosity values 

are influenced by the increasing volume fraction of crystallized regions. 
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Fig. 4. Viscosity temperature dependence of Zr65(Ni,Pd)35 glassy alloy at 

a heating rate of 20 K/min. The solid line () represents the best fit curve 

of all data, obtained at different load differences 
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Fig. 4. Viscosity temperature dependence of Zr65(Ni,Pd)35 glassy alloy at 

a heating rate of 20 K/min. The solid line () represents the best fit curve 

of all data, obtained at different load differences 

Figure 4 shows the shear viscosity (line) calculated 
by the strain rate in Figure 3. The points represent  
a smooth curve of all viscosity data. A common feature 
of the viscosity curves obtained by measuring under 
a constant heating rate is the presence of two almost 
linear parts and curved transitional portion between 
them. The steeper part of the temperature dependence 
represents the approaching of the quasi-equilibrium 
structural state of under-cooled liquid of the alloy,  
described by the “hybrid” equation (3). The other one 
in the lower temperature region is the non-equilibrium 
viscosity of the vitrified alloy. In the temperature range of 
initial crystallization, the viscosity values are influenced 
by the increasing volume fraction of crystallized regions.

Fig. 4. Viscosity temperature dependence of Zr65(Ni,Pd)35 
glassy alloy at a heating rate of 20 K/min. The solid line (−) 

represents the best fit curve of all data, obtained  
at different load differences

Figure 5 presents the measured (points) and cal-
culated (curves) according to the free volume model 

temperature dependencies of the viscosity η  of the 
Zr65(Ni,Pd)35 alloy at 20 K/min. A combination of equa-
tions (1) and (3) is used for obtaining the non-equilibrium 
viscosity curves and equation (3) for the quasi-equilibri-
um viscosity curves (steeper curve in Fig. 5). 

Fig. 5. Viscosity temperature dependence of 
Zr65(Ni,Pd)35 glassy alloy at a heating rate of 20 K/min: 
□ – experimental values; solid line – best fit values (−) 
according to Equation (1); and steep solid line – quasi-

equilibrium viscosity (−) according to Equation (3), 
obtained by varying of free volume model parameters  

B, T0, Qη, Qr, cf,0, η0 and ν

The glass transition temperature, Tg and the value 
of the viscosity at Tg, η(Tg), the values of the model 
parameters in Equations (1−3), νr, Qr, cf,0, T0, Qη, B and 
η0, obtained by regression analysis of the experimental 
data are given in Table 1.

Table 1. Best fit FVM parameters, experimentally 
determined glass transition temperature Tg, Angel’s fragility 
number mA and estimated according Yang fracture strength 

of the studied alloy

Parameters Dimension 20 K/min

n 1/s 2.36E+15

Qr J/mol 120000

cf,o 4.21E-06

R J/molK 8.31451
To K 390
dT K 0.25
Qh J/mol 210201
η0 Pa s/K 3.1901E-16

η(Tg) Pa s 4.12E+10

mA – 32
σ GPa 2.28
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Using the FVM parameters from Table 1 the fragility 
number, and the fracture strength, could be estimated 
using the Equations (5) and (6). The obtained values 
are shown in the two last rows of Table 1.

5. Conclusions

The glass transition temperature is 663 K. The alloy 
Zr65(Ni,Pd)35 possesses excellent fracture strength of 
about 2.28 GPa, comparable to that of stainless steels.

The relatively good thermal and excellent mechanical 
properties make this alloy promising for preparing bulk 
amorphous samples.
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