Artur Kudyba, Natalia Sobczak, Aleksandra Siewiorek, Patrycja Turalska, Adam Klasik, Jerzy Bieliński, Anna Sałacińska, Rafał Kozera

Effect of phosphorus content on the wettability of Ni-P coated surfaces by SAC305 alloy

Abstract

The aim of this study was to determine the effect of the chemical composition of Ni-P coating on the wettability kinetics of SAC305 liquid solder in contact with the Ni-P coating. The study was conducted in vacuum, at 230°C, for 5 minutes, using the sessile drop method in combination with a separate heating of the two test materials, allowing for experimental determination of the contact angle θ. The study used a SAC305 solder (Sn base, Ag 3 wt. %, Cu 0.5 wt. %) and a nickel substrate (Ni 99.8 wt. %) onto which Ni-xP coating of two different levels of phosphorous was applied (x = 4.3 wt. %, or 11.6 wt. %). After the tests of wettability were performed, structural analysis of the surface of the samples was performed by scanning electron microscopy, focusing on the observation of the border SAC305/substrate. In order to determine the effect of phosphorus in the Ni-P coating on the strength of the SAC305/Ni-xP/Ni joints formed, cross sections of samples were tested for shear strength using the improved method of the push-off shear test. It was found that, for the selected range of 4.3 ≤ P ≤ 11.6, increase in the phosphorus content in the coating improves the wettability of the liquid systems tested with the SAC305 solder, but it is an apparent effect resulting from the solder’s penetration of the structural discontinuities formed in the layer of Ni-11.6P, due to phase transitions. For the SAC305/Ni-11.6P/Ni sample, value of the contact angle θ = 5 4° i s mechasmaller, as compared to the SAC305/Ni-4.3P/Ni sample, for which θ = 75°, the shear strength of the joints produced shows virtually no changes, for the SAC305/Ni-11.6P/Ni sample τmax = 15.6 MPa, as compared to τmax = 14.2 MPa for the SAC305/Ni-4.3P/Ni sample.


Keywords: SAC305, Ni-P coating, contact angle, wetting angle, wettability kinetics, lead-free soldering,
pdfDownload 2.63 MB >>