Artur Kudyba, Aleksandra Siewiorek, Natalia Sobczak, Patrycja Turalska

Effect of oxidation and mechanical damage of PCBs with OSP finish on their solderability with SAC305 alloy

Abstract

The paper focuses on the experimental investigation of wetting behavior and solderability of commercial lead-free solder on Printed Circuit Board (PCB) covered with an OSP finish (Organic Surface Protectant) characterized by physical (mechanically scratched) and/or chemical (oxidized in air at 260°C for 1 hour) inhomogeneity of the surface finish. The influence of the quality of the PCB finish on the maximum wetting force Fmax, wetting time t0, the contact angle θ, and the parameters characterizing solderability, were studied. The tests were performed by a wetting balance method with SAC305 solder (Sn-3.0Ag-0.5Cu, wt. %) and commercial flux (EF2200) using MENISCO ST88 apparatus allowing direct measurement of the wetting force Fr and wetting time t0 as well as calculation of the contact angle θ values. The measurements were made at a temperature of 260°C for a contact time of 3 s. For comparison, the tests were also performed on PCBs in delivery state showing average Fmax = 0.9 mN, t0 = 0.58 s and θ = 57°. The results have shown that both oxidation and mechanical damage of the OSP finish have a significant worsening effect on solderability. Scratched OSP finish had an average Fmax = -1.03 mN and θ = 78°. Such surfaces were non-wettable with corresponding values of Fmax = -4.7 mN and θ = 120° for oxidized samples and Fmax = -4.04 mN and θ = 111° for those scratched and oxidized.


Keywords: surfaces, coatings, electronic characterization, defects, surface properties, solderability, wetting balance test,
pdfDownload 1.57 MB >>