Marta Homa, Andrzej Gazda, Natalia Sobczak, Katarzyna Pietrzak, Katarzyna Frydman, Danuta Wójcik-Grzybek

Thermophysical properties of Cu-C composites obtained by powder metallurgy

Abstract

Studies of composite materials of the Cu-C type with additives of different forms of carbon (carbon nanopowder, carbon nanotubes and reduced graphene oxide) were performed by the powder metallurgy method. Based on the structural tests conducted by scanning electron microscopy methods and the examinations of the thermophysical properties (differential scanning calorimetry, dilatometry, laser flash analysis), it was stated that the applied procedure of fabricating composite materials ensures a satisfactory distribution of the carbon phase in the metal matrix in the macro- and meso-scale. In the micro-scale, we observe porosity and heterogeneity resulting in a lowered thermal conductivity (TC < 400 W · m-1 · K-1), despite the satisfactory results of the relative dimensional change. Introducing reduced graphene oxide flakes and short carbon nanotubes into the Cu matrix causes dimensional changes in the composites during heating as a result of oxidation/reduction of the Cu matrix, as well as oxidation of the carbon phase by oxygen and emission of gas products of the reaction (CO2, CO, C, H2O and H2 and hydrocarbons). The composite changes its dimensions: it expands, and bulges are observed on its surface.


Keywords: graphene, composites, thermal conductivity, dimensional stability,
pdfDownload 2.36 MB >>