Mateusz Stachowicz

The role of the densification of moulding sands with inorganic binders in the modeling of their strength obtained after microwave hardening

Abstract

The study attempts to complement the information on the effect of the density of moulding sands with inorganic binders on basic strength parameters, i.e. the tensile and bending strength of moulding sands with hydrated sodium silicate, after the process of fast microwave heating. The tests applied fresh medium quartz sand and three types of commercial non-modified hydrated sodium silicate with a molar module (SiO2/Na2O) ranging from 1.9 to 3.4. The masses made of 0.5 wt. % of water and 1.5 wt. % of binder underwent vibrational densification so as, to obtain different apparent densities (ϱ0) of the moulding sand. The examined strength parameters, after hardening and cooling of the mass samples, were compared to apparent density. The results of the studies of the effect of a diversified density were referred to in the literature data. The occurrence of relations between the apparent density and the tensile and bending strength of the hardened masses was confirmed by means of linear models for advantageous microwave heating, similarly to the previously discussed cases of the use of chemical methods of curing inorganic binders. Also, based on the performed tests, similar strength increases were established, as a result of the changes in the apparent density of the microwave heated masses to those which were observed in the chemically hardened masses. The tests results were used to evaluate the quality of the chemical binders applied in casting according to the strength criteria per 1 wt. % of binder in the mass. In the case of all the tested inorganic binders, an advantageous ratio of strength recalculated to 1 wt. % of binder above the value of 1.20 g/cm3 of the apparent density of the masses based on medium quartz sand, was established.


Keywords: casting, moulding sand, hydrated sodium silicate, density, microwave,
pdfDownload 2.83 MB >>