Lyuben Lakov, Yonka Ivanova, Bojidar Jivov, Mihaela Aleksandrova, Nikolay Barovsky

Investigation of mechanical properties and coefficients of sound insulation of innovative silicone composite material


A new non-combustible, non-flammable, waterproof, long-lasting, heat-insulating composite material was made of glass foam granules (derived from glass waste) and a hydraulic inorganic binder in the form of a white Portland cement solution (CEM I 52.5 N), zeolite, airborne agent and water. The resulting composite is resistant to climatic temperature fluctuations, characterized by a coefficient of thermal conductivity of λ = 0.047 W/mK and is potentially applicable for the production of sound and heat insulating panels for non-bearing partition walls and external insulation of buildings. The technology for obtaining the product is in line with the current tendencies for the development of ecological productions through the utilization of waste materials and provides the opportunity to produce various standard monolith products suitable for direct use or further processing. Experimental studies of the acoustic and mechanical performance of standard experimental samples made from the developed composite material were carried out. The average sound insulation value is 30 dB. An average tensile strength of 0.036 MPa and an average compressive strength of 0.55 MPa were found.

Keywords: composites, sound insulation, soundproofing materials, heat insulating materials,
pdfDownload 4.25 MB >>